Evaluate visual acuities (under normal light conditions) for distance and near first, binocularly, then monocularly if necessary.

DETERMINE PATIENT'S SPECTACLE REFRACTION AT DISTANCE AND AT NEAR (16 IN.):
(If cylinder power is between -0.50D and -0.75D, increase sphere power by -0.25D.)
(Proclear® Multifocal lenses are intended for patients with less than -0.75D of cylinder.)

FITTING STEPS AS EASY AS 1, 2, 3

1. **Determine dominant eye.**
 (We recommend fogging with a +2.00D lens.)

2. **Place the “D lens” in the dominant eye. Place the “N lens” in the non-dominant eye.**
 * Allow 15 minutes for equilibration.

3. **Evaluate visual acuities (under normal light conditions) for distance and near first, binocularly, then monocularly if necessary.**

 *Select the spectacle Rx ADD power. If ADD is in between available ADD powers, round down to lower ADD power.

VISUAL ACUITY EXPECTATIONS

<table>
<thead>
<tr>
<th>Lens</th>
<th>Distance</th>
<th>Near</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binocularly</td>
<td>20/20</td>
<td>20/20</td>
</tr>
<tr>
<td>D Lens</td>
<td>20/20</td>
<td>20/40 or better</td>
</tr>
<tr>
<td>N Lens</td>
<td>20/40 or better</td>
<td>20/20</td>
</tr>
</tbody>
</table>

FITTING EXAMPLE

<table>
<thead>
<tr>
<th>Spectacle Rx</th>
<th>ADD</th>
<th>Suggested Proclear® Multifocal Lens:</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD -3.00 / -0.75x180°</td>
<td>+1.50</td>
<td>OD -3.25 / +1.50D</td>
</tr>
<tr>
<td>OS -3.00 / -0.25x180°</td>
<td>+1.50</td>
<td>OS -3.00 / +1.50N</td>
</tr>
</tbody>
</table>

OD DOMINANT
1. Do not attempt to use fitting methods used by other lenses; always fit off the spectacle Rx.
2. Set reasonable expectations with the patient, especially with first-time wearers of multifocal lenses.
3. The “D” Lens goes on the Dominant eye and the “N” lens goes on the Non-Dominant eye. Determining dominance is essential to successful outcomes.
4. Leave the lights on. Always perform the entire examination in normal light to prevent pupil dilation.
5. Use loose trial lenses for the over refraction (always use +/- 0.25D up to a maximum of +/- 0.50D). Do not use a phoropter.
6. Let the patient wear the first pair of lenses for one week to adapt to the new visual system.
7. Balanced Progressive Technology allows for independent adjustment of either distance sphere or ADD power of a maximum of +/- 0.50. This means the ADD can be changed up to +/- 0.50 without affecting the distance sphere power and vice versa on the same eye.

Monocular verification is key if a problem exists with visual acuity.

After the initial fit, you should first check binocular vision. If vision is not to VA expectations (listed on front of this guide), you need to perform Monocular verification. A common misconception is that if there is a problem with distance, it is in the D Lens. Since both BPT lenses incorporate distance, intermediate, and near vision, sometimes the problem with the distance vision will be in the N lens.

EXAMPLE #1

Final Contact Lens Rx

- OD: -2.00 +1.50 D Lens
- OS: -2.00 +1.50 N Lens

Binocular Vision

- 20/20 Distance
- 20/60 Near

Problem

- Near Vision Not Acceptable
- **DO NOT ASSUME PROBLEM IS IN THE N LENS**

Monocular Vision

- D Lens: Distance: 20/20 Near: 20/60
- N Lens: Distance 20/40 Near: 20/20

Problem is in the D Lens Near VA

Solution

- Add +0.50 to ADD power, vision is now 20/40 (which is normal D Lens near VA)

Final Contact Lens Rx

- OD: -2.00 +2.00 D Lens
- OS: -2.00 +1.50 N Lens

EXAMPLE #2

Final Contact Lens Rx

- OD: +2.00 +1.50 D Lens
- OS: +2.00 +1.50 N Lens

Binocular Vision

- 20/60 Distance
- 20/20 Near

Problem

- Distance Vision Not Acceptable
- **DO NOT ASSUME PROBLEM IS IN THE D LENS**

Monocular Vision

- D Lens: Distance: 20/20 Near: 20/20
- N Lens: Distance 20/60 Near: 20/20

Problem is in the N Lens Distance VA

Solution

- Add +0.50 to distance sphere power, vision is now 20/40 (which is normal N lens distance VA)

Final Contact Lens Rx

- OD: +2.00 +1.50 D Lens
- OS: +2.50 +1.50 N Lens